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In this article we hope to convience the reader that the dynamics of linear
operators can be fantastically complex and that linear dynamics exhibits the
same beauty and complexity as non-linear dynamics. It has been known for
sometime that continuous linear operators on Hilbert space can actually be
chaotic! In fact, we shall show that the orbits of linear operators can be as
complicated as the orbits of any continuous function.

More precisely, there is a (very natural) bounded linear operator T with
the property that any continuous function f on a compact metric space X, is
topologically conjugate to the restriction of T" to an invariant compact set.

1 Non-Linear Dynamics

A discrete dynamical system is simply a continuous function f : X — X where
X is a complete separable metric space. For € X, the orbit of x under f is
Orb(f,z) = {z, f(z), f*(x),...} where f* = fo fo---ofis the n' iterate
of f obtained by composing f with itself n times. In (discrete) dynamics one
is interested in understanding the behavior of orbits of a function. Roughly
speaking, a function f is considered to be “chaotic” if its orbits behave in a
very complicated and unpredictable way. More precisely, we have the following
well known definition:

Devaney’s Definition of Chaos: Suppose that f: X — X is a continuous
function on a complete separable metric space X, then f is chaotic if:

(a) the periodic points for f are dense in X,

(b) f is transitive,

(¢) f has sensitive dependence on initial conditions.

Recall that a point € X is a periodic point for f if f™(x) = x for some
n > 1. Also, f is transitive if for any two non-empty open sets U,V in X, there
exists an integer n > 1 such that f»(U) NV # 0. It is well known that, in
a complete metric space with no isolated points, being transitive is equivalent
(via the Baire Category Theorem) to having a point with dense orbit, which in
turn is equivalent to having a dense Gs set of points each of which has a dense
orbit. Finally, f has sensitivie dependence on initial conditions if there exists a
0 > 0 such that for any z € X and for any neighborhood U of z, there exists a
y € U and an n > 1 such that d(f™(z), f"(y)) > 0 (here d denotes the metric
on X).

It was shown by Banks et. al. [1] that if f has a dense set of periodic points
and is transitive, then f must have sensitive dependence on initial conditions.
Hence only the first two conditions of the definition of chaos need to be verified



when showing that a particular function f is chaotic. In fact, for functions on
intervals in R, it was shown by Vellekoop and Berglund [14] that transitivity
implies chaos. However, in metric spaces other than R, transitivity need not
imply (a) or (c) in the definition of chaos. Although condition (¢) need not
be verified, sensitivity is at the heart of chaos, and for some researchers in the
sciences, sensitive dependence on initial conditions is all that is required for a
deterministic system to be chaotic.
The following examples are well-known, see for instance Devaney [5].

Example 1.1 (Some Chaotic Functions)
1. f:10,1] — [0,1] given by f(x) = 4x(1 — ) is chaotic.
2. f:[-2,2] — [-2,2] given by f(z) = x? — 2 is chaotic.
3. f: 8t — St given by f(2) = 22 is chaotic, where S* = {z € C: |z| = 1}.

4. If f(z) = Ax(1 — z) and X\ > 4, then there exists a Cantor set A C [0,1]
such that f(A) = A and f: A — A is chaotic.

5. Ifc € C and f.(2) = 2°® + ¢, then there exists a compact set J. C C (called
the Julia set for f.) such that f.: J. — J. is chaotic.

In studying the dynamics of functions, the standard equivalence relation
used to say that two functions have the “same dynamics” is topological conju-
gacy. If f: X — X and g : Y — Y are two continuous functions, then f is
topologically conjugate to g if there exists a homeomorphism h : X — Y such
that g = ho f o h~!, that is h conjugates f to g. It is easy to see that having
a dense set of periodic points, or being transitive, are properties that are pre-
served under topological conjugacy. Thus, it follows that being chaotic is also
preserved under topological conjugacy; however, having sensitive dependence
on initial conditions is not preserved, because it is a metric condition and not a
topological condition. It is an easy exercise to show that the functions (1) and
(2) in Example 1.1 are topologically conjugate (via a linear function).

2 Linear Dynamics

It is often said that chaos cannot appear in linear systems, and indeed it is a
nice exercise using Jordan Canonical Forms to understand the behavior of all
orbits of a linear operator in finite dimensions, and none are dense in the space
(also see Proposition 2.1). However, we will present a result due to Rolewicz,
that linear operators on an infinite dimensional Hilbert space can be chaotic.
Furthermore, we will apply non-linear dynamics to help construct vectors whose
orbits under a linear operator are “chaotic”.

In what follows, H will always denote a separable complex Hilbert space. If
T is a linear operator on H, then ||T|| = sup{||Tz| : ||z|| < 1}; we say that



T is bounded if ||T|| < co. It’s well known that T is bounded if and only if T
is continuous. We will denote the set of all bounded linear operators on H by
B(H). We start with some straightforward results that examine sensitivity and
periodic points for linear operators.

Proposition 2.1 IfT € B(H) and T is transitive, then T* has no eigenvectors.

Proof: Suppose that T' is transitive and T*v = Av where v £ 0. If z € H is
a vector with dense orbit, then {T"x : n > 0} is dense in H. Hence {(T"z,v) :
n > 0} is dense in C. But (T"z,v) = (z, (T™)*v) = (z, \"v) = X" (z,v). How-
ever, it is easy to see that {\" (z,v) : n > 0} is not dense in C, a contradiction. m

The beauty of Proposition 2.1, is that it gives a simple answer to the ques-
tion of why a linear operator in finite dimensions cannot be chaotic (or even
transitive). It can also be used to show that no compact operator on a Hilbert
space can be transitive.

Proposition 2.2 If T € B(H), then T has sensitive dependence on initial con-
ditions if and only if sup ||T™|| = oo if and only if T has an unbounded orbit.

Proof:  The Principle of Uniform Boundedness says that sup |77 = oo if
and only if T" has an unbounded orbit. So suppose that there is a vector v € H
with unbounded orbit, i.e. sup ||T™v| = co. Now suppose that ¢ is any fixed
positive number. If x € H and U is a neighborhood of z, then let y. = = + ev.
Then for sufficiently small € > 0, we have y. € U and ||T"x — T"y.|| = €| T"v||
and since {||7"v||} is an unbounded sequence, there exists a choice of n such
that |T"x — T"yc|| > 6. Thus T has sensitive dependence on initial conditions.
Conversely, suppose T has sensitive dependence on initial conditions and that
& > 0 is the number guaranteed by the sensitivity condition. Choosing = = 0,
we have that for any e > 0 there exists a y and an n > 1 such that |ly|| < € and
|T™y|| > 6. Thus, |1y|| < 1 and [|[T"(Ly)|| > 6/€, thus [|[T"|| > &/e. Since € >0
is arbitrary, it follows that sup [|T"| = co. &

It follows from the proposition above that a linear operator 7" in finite dimen-
sions may have sensitive dependence on initial conditions, it fact this will hold
whenever T has an eigenvalue X satisfying |A| > 1, because then | T7| > |A|™.
It also follows that whenever a bounded linear operator T is transitive it neces-
sarily has sensitive dependence on initial conditions; because, if T' is transitive,
it will have a vector with dense orbit, and hence it has an unbounded orbit.

Proposition 2.3 If T € B(H), then a vector is a periodic point for T if and
only if it is a finite linear combination of eigenvectors of T where the eigenvalues
are n'" roots of unity.

Proof: Suppose that Tv; = A\v; for i € {1,... ,m} and for each i, there
exists an n; > 1 such that A\ = 1. If x = cjv; + -+ + ¢pvp for scalars
{¢;}, then z is a periodic point with period n = ning---n,,. For the con-
verse, if x is a periodic point for 7', then T"x = z for some n > 1. Hence



x € ker(T™ — I). Now factor the polynomial (z"™ — 1) into distinct linear terms
(z" —1) = (z — A1) (2 — \,) where each ); is an n'" root of unity. Thus,
xeker(T"—1I)=%ker[(T— M) - (T — A\p)] =span{ker(T = \;) : 1 <i<n}. =

A nice corollary of Proposition 2.3 is that a linear operator 1" on a finite
dimensional Hilbert space has a dense set of periodic points if and only if there
exists an n > 1 such that 7™ = I, in which case every point is a periodic point.

The Backward Shift: The set of all sequences x = (xg, z1,22,...) of
complex numbers such that ||z|? = 377 |z,|? < oo is denoted by ¢2. There is
a natural inner product on £2: if z,y € 2, then (x,y) = > oo o Tnln, Where z,
and y,, denote the n*" coordinates of x and y, respectively. With the above inner
product, 2 becomes a separable infinite dimensional complex Hilbert space.

An important linear operator on ¢? is the Backward Shift B. The Backward
shift acts as follows:

B(Z‘(),J?l,xg,...) = (J}l,l‘g,...).

It is clear that ||Bz|| < |jz| for all z € ¢2. It follows that B is a continuous
linear operator from ¢2 into ¢2. It is also easy to check that the orbit of any
vector under B converges to zero. For if z € €2, then |B"z||? = Y7, |zx> — 0
as n — oo. Hence the dynamics of the Backward Shift are fairly simple—all
orbits converge to the fixed point 0. However, in 1969 Rolewicz [11] proved the
following suprising result.

Theorem 2.4 If B is the Backward shift on £2, then 2B is chaotic on £2.

Naturally, Rolewicz [11] did not use this termoniology, and actually he only
proved that twice the Backward Shift is transitive, however this is the crucial
part in the defintion of chaos. In fact some authors define chaos as transitiv-
ity plus sensitive dependence on initial conditions and do not require a dense
set of periodic points, see e.g. Knudsen [9] or Robinson [10]. Regardless, it is
suprising—even amazing—that linear operators can be chaotic!

Proof: Let T = 2B. Notice that T"(xzo, z1,22,...) = 2™(Tn, Tpi1,...). In
order to show that the periodic points for T are dense, let y € (2. If y =
(0,91, - .. ), then define vectors z,, as:

Yo Yn—1 Yo Yn—1 Yo Yn—1
%,..., on ,ﬁ,..., 22n723_n""’ 23117"')'

Tn = (y07~~~ sy Yn—1,

It is easy to check that z,, € £? and that ,, is a periodic point for T with period
n. Furthermore, x,, — y, hence the periodic points for T are dense.

To show that T is transitive, let U and V be two open sets in £2 and choose
vectors x € U and y € V. Now let

Yo Yn—1 0.0 )

Zn:(x(],.’bl,...7£En,1,2—n7..., on ,U,u,.



Then z, — z and T"z, = (Y0,.-- ,Yn-1,0,0,...) — y. Hence for all large n,
zn € U and T"z, € V. Thus, T is transitive.

One can also easily check that ||7"] = 2™ — oo, thus, by Proposition 2.2,
T has sensitive dependence on initial conditions. It follows that T is chaotic on
2. m

The proof given above will remind many of what is now called “symbolic
dynamics”. However, there is one important difference here, in that the vectors
we construct must actually be in the Hilbert space, that is they must have a
finite norm. Where as in symbolic dynamics any sequence with the appropriate
symbols belongs to the “space”.

The Backward Shift of Higher Multiplicity: Let’s consider a natural
generalization of the Backward Shift. Suppose H,, is a separable complex Hilbert
space with dimension n (1 < n < o), then ¢?(H,,) will denote the set of all
sequences of vectors {xy}72, in H,, satisfying Y~ [|zx||? < cc. If we define a
norm on £2(H,) by |[{zr}720I?> = >opep |2k ||?, then £2(H,,) becomes a separable
infinite dimensional Hilbert space.

The Backward Shift of multiplicity n is the operator B,, on ¢2(H,,) defined
as:

Bn(l'o, T1,L2,y... ) = (1'1,1'2, e )

Thus B,, takes a sequence of vectors and produces another sequence of vectors.
If n < oo, then H,, = C", so each of the coordinates x; is a vector in C". In
particular, ¢?(H;) = ¢?(C) = (2, and so B; = B. If n = oo, then since all
separable infinite dimensional Hilbert spaces are isomorphic, one may think of
Hoo as being 2. It is an easy exercise to show that B, is unitarily equivalent to
B®B®---® B (n times). The same proof as given in Theorem 2.4 also gives
the following result.

Theorem 2.5 If1 <n < oo and By, is the Backward Shift with multiplicity n,
then 2B, is chaotic on (*(H,).

Now that we know that there are chaotic linear operators, one may naturally
ask how many linear operators are chaotic? Surprisingly, more than one might
first think. In fact, it follows by work of Herrero [8] and Chan [4] that the chaotic
linear operators on a Hilbert space H are dense in B(H) in the strong operator
topology—that is the topology of pointwise convergence. Indeed, within various
natural classes of linear operators there are many examples of linear operators
that are chaotic; including shift operators, such as twice the Backward shift,
composition operators, and adjoints of multiplication operators, see [12],[3],[7].

Now that we have seen that linear operators may have vectors with dense
orbits—which in a sense is as complicated as an orbit could possibly be—we are
naturally lead to ask the following question:



Question: For a linear operator, how complicated can an orbit be that is
not dense?

For example, can an orbit for a linear operator be dense in the unit ball of
the Hilbert space, or dense in a Cantor set, or some other fractal-like subset of
the Hilbert space? The following result due to Bourdon and the author sheds
some light on these types of questions, and also has other important applications
to the dynamics of linear operators (see [2]).

Theorem 2.6 If T € B(H), © € H, and the orbit of © is somewhere dense in
‘H, then the orbit of x must be dense in H.

Recall that a set is somewhere dense if its closure has non-empty interior,
otherwise it is called nowhere dense. Thus, for a linear operator an orbit is either
nowhere dense or everywhere dense. In particular, a linear operator cannot have
an orbit whose closure is the closed unit ball. On the other hand, the author
has proven the following result which says that orbits of linear operators can
be as complicated as the orbit of any continuous function on a compact metric
space. Recall that K is an invariant set for T if T(K) C K.

Theorem 2.7 Suppose that 1 < n < oo and B, is the Backard Shift with
multiplicity n on (2(H,); also let T = 2B,,. If f : X — X is any continuous
function on a closed bounded set X C 'H,, then there is an invariant closed set

K C (*(H,) such that T|K is topologically conjugate to f.

If 1 < n < oo, then the Theorem implies that any continuous function
f: X — X on acompact set X C C" is topologically conjugate to the restriction
of a linear operator to an invariant closed set. In particular, looking back at
Example 1.1, consider the function f(x) = 5z(1 — z), since f is chaotic on a
Cantor set A C R C C, it follows that f is topologically conjugate to a restriction
of T = 2By = twice the Backward shift (with multiplicity one). Thus, there
is a Cantor set K C ¢2 such that T(K) C K and T|K is conjugate to f. In
particular, since f is transitive, it has a dense orbit, thus T'|K also has a dense
orbit. Thus it follows that 7" has an orbit that is dense in a Cantor set!

Similarly, 7' = 2B; has orbits that are dense in compact sets homeomorphic
to products of intervals and Cantor sets, Julia sets, and other fractal-like sets. In
higher dimensions there are continuous functions with orbits dense in products
of Julia sets, and other such “strange attractors” ([5], [10]) thus T' = 2B,, will
have orbits dense in sets that are homeomorphic to such sets.

Lemma 2.8 If X is a compact metric space, then X is homeomorphic to a
compact subset of £2.

Proof: If d is the metric on X and {x,}22 is a countable dense subset of
X, then the map h : X — ¢2 given by h(z) = {d(z,,)/2"}2, is easily seen to
be one-to-one and continuous. Since X is compact, i is a homeomorphism. m

By the previous Lemma we also have the following corollary of Theorem 2.7



Corollary 2.9 If T = 2B, and f : X — X is any continuous function on a
compact metric space X, then there is an invariant compact set K C (*(Hso)
such that T|K is topologically conjugate to f.

This Corollary says that there is a linear operator, namely twice the Back-
ward Shift of infinite multiplicity, that is universal in the sense that its re-
striction to an invariant compact set can have the “same dynamics” as any
continuous function on any compact metric space!

Proof of Theorem 2.7: Suppose that T'= 2B,, and f : X — X is a continuous
function on a closed bounded set X C H,,. Define h : X — EQ(Hn) by:

x 2.13 33)
) = (@, 10 L0 L0

Notice that z, f(z), f?(x), ... are all vectors in X C ‘H,, and since Orb(f,z) C
X and X is a bounded set in H,, it follows easily that ||h(z)| < oo, thus
h does map X into ¢?(H,). It is also clear that h is one-to-one and that
h(f(x)) = T(h(x)) for all z € X. Thus if we set K = h(X), then K is in-
variant for T and ho foh™! = T|K. So, it suffices to show that h : X — K is a
homeomorphism. First let’s show that A is continuous. So, suppose that g € X
and € > 0. Let d > 0 be the diameter of X, that is ||z —y|| < d for all z,y € X.
Then choose an m > 1 such that » ;- ff—i < €2/4. Since fO, fL, f%,... fm
are all continuous at g, there exists a § > 0 such that if ||z — o] < J, then
| £%(z) — fE(x0)| < Q\/ﬁ for all k € {0,... ,m}. Thus if ||z — 2¢|| < §, then

k ka 2 k kSC 2
(@) — h(zo)||? = Z“f = GO SR G R E

k=m+1
m 2 0 2 2 2 2
€ d € € €
< S S T
*24(m+1)+ 2. mSytT=g <
k=0 k=m+1

Thus [|h(z) — h(zo)|| < €. Hence h is continuous. Also, since it is clear that
|h(z) — h(y)|| > ||z — y]|, we see that h=! : K — X is also continuous, in fact
Lipschitz. Thus h is a homeomorphism and the result follows. m

We next notice that if the continuous function f is Lipschitz on X C H,,,
that is, ||f(z) — f(y)|| < C|lx — y||, then the conjugating homeomorphism h is
bi-Lipschitz (that is, h and h~! are both Lipschitz).

Theorem 2.10 Suppose 1 <n < oo and f: X — X is a Lipschitz function on
a closed bounded subset X C H,, with Lipschitz constant M. If A > max{M, 1},
then there is a closed set K C (*(H,) that is invariant for T = AB,, such that
f is topologically conjugate to T|K wvia a bi-Lipschitz homeomorphism.



Proof: Define h: X — (*(H,,) by:

x 21‘ 3.’1}
o) =, 10 PO P@)

Follow the proof of Theorem 2.7 and notice that if f is Lipschitz, then h is
bi-Lipschitz, in fact ||z —y|| < ||h(z) —h(y)|| < C||lz—y|| where C? = >"77, ]KITZ:
]

Since bi-Lipschitz homoemorphisms will preserve more of the metric struc-
ture of X than a homeomorphism would—for instance the Hausdorff dimension
of X—it follows easily that there are bounded linear operators that have orbits
that are dense in compact sets with any given Hausdorff dimension. Since the
functions f.(z) = 22 + ¢ are Lipschitz on compact sets, it follows that multiples
of the Backward shift will have orbits dense in compact sets that are bi-Lipschitz
equivalent to Julia sets. Thus the closure of an orbit of a linear operator can
have the same fine geometric structure as Julia sets and other such complicated
sets. In particular, we see that the orbits of linear operators can be fantastically
complicated, and that linear dynamics exhibits the same beauty and complexity
as non-linear dynamics.

Here we have just touched on the dynamics of linear operators. There is an
extensive literature on the subject, see for instance [13], [6] and their references.
In operator theory a linear operator that is transitive is usually called hyper-
cyclic, since it is a strong form of cyclicity. Two important open questions in
the area are the following:

Open Question: If T € B(H), then does T have a non-trivial invariant
closed set? Here, non-trivial means not {0} and not all of H. This is equivalent
to asking: does every bounded linear operator T have a non-zero vector whose
orbit is not dense? It should be noted that the answer to this question is no for
operators on certain Banach spaces, such as ¢'.

Open Question: If T € B(H) and T is transitive, then is T @ T also tran-
sitive?

Finally, the following is a question that occured to the author while writing
this paper:

Question: If X is a compact metric space with no isolated points, then
is there a continuous chaotic function f : X — X7 Or simply a transitive
function?
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