
ESSENTIALLY SUBNORMAL OPERATORS

NATHAN S. FELDMAN

Abstract. An operator is essentially subnormal if its image in the Calkin al-
gebra is subnormal. We shall characterize the essentially subnormal operators
as those operators with an essentially normal extension. In fact, it is shown
that an essentially subnormal operator has an extension of the form “Normal
plus Compact”.

The essential normal spectrum is defined and is used to characterize the
essential isometries. It is shown that every essentially subnormal operator may
be decomposed as the direct sum of a subnormal operator and some irreducible
essentially subnormal operators. An essential version of Putnam’s Inequality
is proven for these operators. Also, it is shown that essential normality is a
similarity invariant within the class of essentially subnormal operators. The
class of essentially hyponormal operators is also briefly discussed and several
examples of essentially subnormal operators are given.

1. Introduction

Let H denote a separable Hilbert space, B(H) the algebra of all bounded linear
operators on H and B0(H) the ideal of compact operators. Also, let B/B0 denote
the Calkin algebra and let π: B(H)→ B/B0 denote the natural quotient map.

It is well known that subnormality is a C*-property. That is, one may define, in
terms of positivity conditions, what it means for any element of a C*-algebra to be
subnormal. Furthermore, subnormal elements of C*-algebras are preserved under
*-homomorphisms. This was first shown by Bram [4] in 1955. Also, see Bunce and
Deddens [6] or Conway [7], p. 35.

We shall give another proof of the fact the subnormality is a C*-property and
even show that subnormality is preserved under certain positive linear maps. Our
result shows that the normal spectrum of a subnormal operator is invariant under *-
isomorphisms. Thus one may define the normal spectrum of any subnormal element
of any C*-algebra.

In view of the above remarks, if A is a C*-algebra and s ∈ A, then it follows
that s is subnormal in A if and only if ρ(s) is a subnormal operator for some (and
hence every) faithful representation ρ of C∗(s).

If T ∈ B(H), then we shall say that T is essentially subnormal if π(T ) is sub-
normal as an element of B/B0. More generally, if P is a C∗-algebra property (such
as normal, hyponormal, subnormal, isometry, etc.), then we say that an operator
T is essentially P if π(T ) has property P in B/B0.
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One of the main results of this paper is the following.

Main Result. If T ∈ B(H), then the following are equivalent:
(a) T is essentially subnormal;
(b) T has an essentially normal extension;
(c) T has an extension of the form normal plus compact.

The class of essentially subnormal operators has previously been studied in
Lange [11] and Williams [15]. In [11] several conditions are given each charac-
terizing the essentially subnormal operators whose spectrum is a K–spectral set. In
[15] it was observed that (b) implies (a) in the above result. He also showed that
the converse holds if and only if the Calkin algebra is “dual closed”. However, we
take a different approach.

If T is essentially subnormal, then, as mentioned above, the normal spectrum
of π(T ) in the Calkin algebra is well defined. We shall call it the essential normal
spectrum of T . We show that it coincides with the essential spectrum of a “minimal”
normal plus compact extension.

We also use the essential normal spectrum to characterize the essential isometries.
This leads to some interesting examples and applications; such as the diagonaliz-
ability of the self-commutator of certain essentially subnormal operators. This is
new even for subnormal operators.

For instance, it is shown that if S is the Bergman shift, M is an invariant
subspace for S with infinite index and T = S|M, then T is unitarily equivalent to
a compact perturbation of the unilateral shift of infinite multiplicity. This answers
a question in Conway and Putnam [9] where an irreducible subnormal operator
is constructed that is similar to a compact perturbation of the shift of infinite
multiplicity. It also implies that the self-commutator of T , [T ∗, T ], is diagonalizable
with eigenvalues of finite multiplicity.

Finally, it is shown that if an essentially subnormal operator S is similar to an
essentially normal operator, then S is also essentially normal. This is also new for
subnormal operators.

2. Preliminaries

If S is a subnormal operator, then let σn(S) denote the normal spectrum of S.
The following characterization of subnormality is useful when studying C*-algebras.
Observe that if S is a subnormal operator, then the map from C(σn(S)) → B(H)
given by f 7→ Sf , where Sf is the Toeplitz operator with symbol f , is a positive
linear map satisfying z 7→ S and z̄z 7→ S∗S.

Theorem 2.1. An operator S ∈ B(H) is subnormal if and only if there exists a
compact set K ⊆ C and a positive linear map ρ: C(K)→ B(H) such that ρ(z) = S
and ρ(z̄z) = S∗S. Furthermore, if K and ρ exist, then σn(S) ⊆ K.

Remark. All positive linear maps and *-homomorphisms are assumed to be unital
(preserve identities).

Proof. If ρ exists, then since ρ is positive and acts on an abelian C∗–algebra it
must also be completely positive (see [10], p. 260). Thus, we may dilate ρ (see
[10], p. 260). That is, there exists a Hilbert space K ⊇ H and a *–homomorphism
φ: C(K)→ B(K) such that ρ(f) = Pφ(f)|H for each f ∈ C(K), where P denotes
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the projection of K onto H. If N = φ(z), then clearly N is normal and σ(N) ⊆
K. Since S = PN |H we have that N =

[
S ∗
A ∗

]
relative to K = H ⊕ H⊥. As

S∗S = ρ(z̄z) = PN∗N |H we must have the (1,1) entry of N∗N equal to S∗S.

However, N ∗N =
[
S∗ A∗

∗ ∗

] [
S ∗
A ∗

]
=
[
S∗S +A∗A ∗

∗ ∗

]
. Thus, A = 0. Hence H

is invariant for N and thus S is subnormal. Since N is a normal extension of S,
σn(S) ⊆ σ(N) ⊆ K. Hence the Theorem follows.

Remark. First observe that if ρ and K exist in Theorem 2.1, then K = σn(S) if
and only if ρ is one–to–one. Also notice that if T is any operator on H, then there
exists a compact set K ⊆ C and a positive linear map ρ: C(K)→ B(H) such that
ρ(z) = T . This follows because every operator has a normal dilation. In fact, every
contraction has a unitary dilation.

Corollary 2.2. If S is a subnormal operator and ρ : C∗(S) → B(H) is a positive
linear map with ρ(S) = T and ρ(S∗S) = T ∗T , then T is a subnormal operator and
σn(T ) ⊆ σn(S).

It follows from Corollary 2.2 that the normal spectrum of a subnormal operator is
preserved under *-isomorphisms. Thus, if s is a subnormal element of a C∗–algebra
A, then we may define the normal spectrum of s. Simply define σn(s) = σn(φ(s))
where φ is a faithful representation of C∗(s). By Corollary 2.2 this is independent
of the choice of φ.

Corollary 2.3. If A is a C*-algebra and s ∈ A, then s is subnormal in A if and
only if there exists a compact set K ⊆ C and a positive linear map ρ: C(K) → A
such that ρ(z) = s and ρ(z̄z) = s∗s. Furthermore, if ρ exists, then σn(s) ⊆ K.

Observe that if s ∈ A is subnormal, then we may choose K = σn(s).
We now prove a general decomposition theorem for operators that will be useful

later on. Say that an operator is completely reducible if its lattice of reducing
subspaces has no non-zero minimal elements. Thus a normal operator is completely
reducible if and only if it has no eigenvalues.

Proposition 2.4. If T is an operator, then T = S0 ⊕ (
⊕∞

n=1 Sn) ⊕ (
⊕∞

n=1 Tn)
where

(a) S0 is completely reducible;
(b) Sn is irreducible and C∗(Sn) ∩ B0 = (0);
(c) Tn is irreducible and B0 ⊆ C∗(Tn).

Naturally, not every summand need appear in the above decomposition.

Lemma 2.5. If T is an operator and C∗(T ) contains a non–zero compact operator,
then T has a non-zero irreducible orthogonal summand S such that B0 ⊆ C∗(S).

Proof. If I = C∗(T ) ∩ B0, then I is a non-zero C∗–algebra of compact operators.
However every C∗–algebra of compact operators is unitarily equivalent to a direct
sum of algebras of the form B0(M) where M is a reducing subspace for I (see
[10], p.39). Thus there is a reducing subspace M for I such that I|M = B0(M).
Since I is an ideal in C∗(T ) that acts non-degenerately on M it follows that M is
reducing for T . If S = T |M, then S is the required orthogonal summand.

Remark. It follows from Lemma 2.5 that if T is completely reducible, then C∗(T )
contains no non-zero compact operators.
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Proof of Proposition 2.4. If T is irreducible, then by Lemma 2.5 T is either of the
form (b) or (c). Likewise, if T has no minimal reducing subspaces, then T is
completely reducible so it has the form in (a). Otherwise T is reducible and has
some minimal reducing subspaces. If T acts on H, then let {Hn : n ≥ 1} be a
maximal collection of pairwise orthogonal minimal reducing subspaces for T . This
gives that T = S0 ⊕ (

⊕∞
n=1Bn) where H = H0 ⊕

⊕∞
n=1Hn, Bn = T |Hn for n ≥ 1

and S0 = T |H0. Clearly Bn is irreducible since each Hn is minimal. Likewise
S0 is completely reducible by the maximality of the collection {Hn}. Thus, by
Lemma 2.5 each Bn has the form of (b) or (c). So the result follows.

3. Main Results

Theorem 3.1. If T ∈ B(H), then the following are equivalent:
(a) T is essentially subnormal;
(b) T has an essentially normal extension;
(c) T has an extension of the form normal plus compact.

Proof. It is clear that (c) implies (b). Let’s show that (b) implies (a). There are
several ways to do this depending on your favorite definition of subnormality. For
completeness we shall use Corollary 2.3. If R ∈ B(K) is an essentially normal
extension of T , then the compression map κ:B(K)→ B(H) is a positive linear map
that sends compact operators to compact operators. Hence κ iduces a positive linear
map κ̂ : B(K)/B0(K)→ B(H)/B0(H). Furthermore, its easy to see that κ̂(π(R)) =
π(T ) and κ̂(π(R∗R)) = π(T ∗T ). Thus, since π(R) is normal in B(K)/B0(K) it
follows from Corollary 2.3 that π(T ) is subnormal in B(H)/B0(H). Observe that it
also follows from Corollary 2.3 that σn(π(S)) ⊆ σn(π(R)) = σe(R).

We now show that (a) implies (c). If T is essentially subnormal, then π(T )
is subnormal in B(H)/B0(H). Thus by Corollary 2.3 there exists a compact set
K (that we may choose to be σn(π(T )) ) and a positive linear map ρ: C(K) →
B(H)/B0(H) such that ρ(z) = T and ρ(z̄z) = T ∗T . It follows from [10], p.266, that
there exists a positive (unital) linear map τ :C(K) → B(H) such that ρ = π ◦ τ .
Since τ is positive, it is also completely positive (see [10], p. 260). Thus, τ has
a dilation (see [10], p.260). That is, there exists a Hilbert space K ⊇ H and a
*–homomorphism φ:C(K)→ B(K) such that τ(f) = Pφ(f)|H for each f ∈ C(K);
where P denotes the projection of K onto H.

If N = φ(z), then N is normal and σ(N) ⊆ K. Also let S = τ(z). Since

S = PN |H we have that N =
[
S ∗
A ∗

]
relative to K = H ⊕ H⊥. As π(S∗S) =

π(T ∗T ) = ρ(z̄z) = π(τ(z̄z)) = π(PN∗N |H), we must have the (1,1) entry of N∗N

equal to a compact perturbation of S∗S. However, N∗N =
[
S∗ A∗

∗ ∗

] [
S ∗
A ∗

]
=[

S∗S +A∗A ∗
∗ ∗

]
. Thus, A is compact. Since S is a compact perturbation of T ,

(T − S) is compact. So, if C =
[
(T − S) 0
−A 0

]
, then C is compact and N + C =[

T ∗
0 ∗

]
is an extension of T . So, the result follows.

Remark. It follows from the proof of (b) implies (a) that the restriction of an
essentially subnormal operator to an invariant subspace is essentially subnormal.
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Corollary 3.2. Let T be an essentially subnormal operator.
(a) If R is an essentially normal extension of T, then σn(π(T )) ⊆ σe(R).
(b) There exists an extension R of T of the form normal plus compact, such

that σe(R) = σn(π(T )).

Remark. Recall that σn(π(T )) is defined as the normal spectrum of φ(π(T )) for
some faithful representation φ of C∗(π(T )). The above corollary relates this to
extensions of T .

Proof. (a) It follows from the above proof of (b) implies (a) in Theorem 3.1 that if
R is an essentially normal extension of T , then σn(π(T )) ⊆ σe(R).

(b) This also follows from the proof of (a) implies (c) in Theorem 3.1 where
we may choose the compact set K = σn(π(T )) (as mentioned in the proof). This
implies the existence of an extension of the form normal plus compact with essential
spectrum contained in σn(π(T )). The reverse inclusion follows from (a).

Proposition 3.3. If S is an essentially subnormal operator, then the following
hold.

(a) If f is analytic near σ(S), then σn(π(f(S))) = f(σn(π(S))).
(b) σle(S) ⊆ σn(π(S)) ⊆ σe(S).
(c) σe(S) = σn(π(S))∪ {some components of C− σn(π(S))}.
(d) If M∈ LatS, then σn(π(S|M)) ⊆ σn(π(S)).
(e) If C∗(S) ∩ B0 = (0), then S is subnormal.

Proof. Let φ be a faithful representation of C∗(π(S)) on a separable Hilbert space.
Also let T = φ(π(S)). Thus T is a subnormal operator and, by definition, σn(π(S)) =
σn(T ), see the remarks after Corollary 2.2.

Since φ is a *-isomorphism and f is analytic in a neighborhood of σ(S), we have
σn(π(f(S))) = σn(f(T )) = f(σn(T )) = f(σn(π(S))). Where the second equality
follows from Conway [7], p.42.

Observe that (b) follows from the fact that σl(T ) = σap(T ) ⊆ σn(T ) ⊆ σ(T ).
Likewise (c) follows from the corresponding identity for T (see Conway [7], p.41).

For (d), first use Corollary 3.2 to find an essentially normal extension R of S
with σe(R) = σn(π(S)). Now, since R is also an extension of S|M, Corollary 3.2
also gives that σn(π(S|M)) ⊆ σe(R) = σn(π(S)).

If C∗(S) ∩ B0 = (0), then the quotient map π is a *-isomorphism of C∗(S)
onto C∗(π(S)). Since S is essentially subnormal, π(S) is subnormal. Thus since
subnormality is a C∗ property, S is also subnormal.

We now prove an essential version of Putnam’s Inequality for essentially subnor-
mal operators as well as a decomposition theorem. If K is a compact set in C, then
R(K) denotes the uniform closure of the set of rational functions with poles off K.

Theorem 3.4. If T is an essentially subnormal operator, then
(a) ‖[T ∗, T ]‖e ≤ dist

[
z̄, R(σe(T ))

]2;
(b) T = S ⊕ (

⊕∞
n=1 Tn) where S is a subnormal operator and Tn is an irre-

ducible essentially subnormal operator with B0 ⊆ C∗(Tn).

Remark. Part (a) was first proven for subnormal operators by Aleman [1] using
different methods. The proof given here first appeared in Conway and Feldman [8]
for subnormal operators.
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Proof. (a) Let φ be a faithful representation of C∗(π(T )) and set S = φ(π(T )).
Since T is essentially subnormal, S is subnormal. Since φ is an isometry we have

‖[T ∗, T ]‖e = ‖[S∗, S]‖ ≤ dist
[
z̄, R(σ(S))

]2 = dist
[
z̄, R(σe(T ))

]2
.

Where we have used a version of Putnam’s Inequality for subnormal operators due
to Axler and Shapiro [3] (also see Conway [7], p.177).

(b) By Proposition 2.4, we know that T = S0 ⊕ (
⊕∞

n=1 Sn)⊕ (
⊕∞

n=1 Tn) where
S0 is completely reducible, C∗(Sn) contains no non-zero compact operators and
B0 ⊆ C∗(Tn). If we let S = S0 ⊕ (

⊕∞
n=1 Sn), then S is essentially subnormal and

C∗(S) contains no non-zero compact operators. Thus by Proposition 3.3 (e), S is
subnormal. Furthermore, each Tn is essentially subnormal, since they each have S
as an essentially subnormal extension.

Remark. There is also a version of Theorem 3.4 (a) for essentially hyponormal
operators. That is, if T is essentially hyponormal, then ‖[T ∗, T ]‖e ≤ 1

π Area[σe(T )].
This follows from Putnam’s Inequality for hyponormal operators and an argument
as above.

Example 3.5.
(a) S+C is essentially subnormal whenever S is subnormal and C is compact.
(b) S∗|M⊥ is essentially subnormal whenever S is a subnormal operator with

compact self-commutator and M∈ LatS.
(c) If S is a subnormal operator, then the Toeplitz operator, Sf , with symbol

f ∈ L∞(µ) is essentially subnormal whenever the Hankel operator Hf is
compact.

(d) S(∞) is essentially subnormal if and only if S is subnormal.
(e) S and S∗ are essentially subnormal if and only if S is essentially normal.

Proof. Parts (a) and (b) are clear. (d) follows from Theorem 3.4(b). Consider
(c). If S is a subnormal operator, N is the minimal normal extension of S and

µ = svsmN , then for each f ∈ L∞(µ), f(N) =
[
Sf ∗
Hf ∗

]
. Thus, if the Hankel

operator Hf is compact, then Sf has f(N) +
[

0 0
−Hf 0

]
as an extension. So, Sf is

essentially subnormal.
(e) By considering a faithful representation of C∗(π(S)), one easily sees that if

S is essentially subnormal, then it is also essentially hyponormal. Thus, if both
S and S∗ are essentially subnormal, then the self–commutator of π(S) in B/B0 is
both positive and negative, hence zero. So, S is essentially normal. The converse
is clear.

Example 3.6. If f ∈ L∞(∂D), then let Tf denote the Toeplitz operator with symbol
f on H2.

(a) If f ,f̄ ∈ H∞ + C(∂D), then Tf is essentially normal.
(b) If f ∈ H∞ + C(∂D), then Tf essentially subnormal.
(c) If f = g + h̄ where g, h ∈ H∞ and h is in the Dirichlet space, then Tf is

essentially subnormal.

Example 3.7. There exists an essentially hyponormal unilateral weighted shift that
is not essentially normal.
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Proof. Define two sequences {αn}∞n=0 and {βn}∞n=0. Let αn = 1 if n = 2k for some
k ≥ 2 and αn = 0 otherwise. Also, let βn = −1

k if 2k + 1 ≤ n ≤ 2k + k and k ≥ 2.
Otherwise, βn = 0.

One easily checks that 0 ≤
∑n
j=1 αj −

∑n
j=1 |βj | ≤ 1 for all n ≥ 0. Now define a

unilateral weighted shift T with weights w2
n =

∑n
j=1 αj −

∑n
j=1 |βj |.

One easily checks that [T ∗, T ] has eigenvalues {αj + βj}. Thus, since βj → 0
and αj ≥ 0, [T ∗, T ] is a compact perturbation of a positive operator. So, T is
essentially hyponormal. However, since {αj +βj} does not converge to zero, [T ∗, T ]
is not compact.

Finally, if one wants T to have all positive weights, then choose a sequence εj > 0
with εj → 0, and replace any wj that equals zero with an εj .

Almost surely, there exists an essentially subnormal unilateral weighted shift
that is not essentially normal.

Question 3.8. Can one characterize the weighted shifts that are essentially sub-
normal?

4. Essential Isometries

Recall that T is an isometry if and only if T ∗T = I. Thus, isometries may be
defined in any C∗–algebra. In particular, we may speak of essential isometries as
those operators T such that π(T ) is an isometry in B/B0. That is, T ∗T − I is
compact. For example, a unilateral weighted shift with weights {wn} is an essential
isometry if and only if wn → 1 as n→∞.

One of the most well understood class of subnormal operators is the class of
isometries. Thus one may expect that the class of essential isometries would be a
nice collection of essentially subnormal operators in which several natural questions
may be answered. We will obtain a complete classification of all essential isometries.
An application of this allows us to show that certain subnormal operators have
diagonalizable self–commutators. Also, some natural questions are raised about
unitary equivalence modulo the compacts for essentially subnormal operators.

Proposition 4.1. If S is an essentially subnormal operator, then the following are
equivalent:

(a) S is an essential isometry;
(b) σn(π(S)) ⊆ ∂D;
(c) S has an extension of the form unitary plus compact;
(d) S has an essentially normal extension R with σe(R) ⊆ ∂D.

Proof. Let φ be a faithful representation of C∗(π(S)) and set T = φ(π(S)). Thus, T
is subnormal. Further, T is an isometry if and only if S is an essential isometry. By
definition, σn(π(S)) = σn(T ). Furthermore, its well known that T is an isometry
if and only if σn(T ) ⊂ ∂D. Thus (a) and (b) are equivalent.

If (b) holds, then by Corollary 3.2 there exists an extension of S of the form
N +C with N normal and C compact having the property that σe(N) ⊂ σn(π(S)).
Since σn(π(S)) ⊂ ∂D, a compact perturbation of N is a unitary operator. Say,
N + K = U where K is compact and U is unitary. Thus, U + (C − K) is an
extension of S with the required form.

Clearly, (c) implies (d). Also, (d) implies (b) by Corollary 3.2. So the result
follows.
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If S is an essentially subnormal operator, then σle(S) ⊆ σn(π(S)). Thus, if S is
an essential isometry, then the Fredholm index of S, indS, is well-defined.

If S is an essential isometry that is also essentially normal, then S is actually
essentially unitary. Furthermore, these have all been classified by the Brown–
Douglas–Filmore Theory [5]. Thus an essentially unitary operator is a compact
perturbation of either a unitary, the unilateral shift of multiplicity n or its adjoint
(the backward shift). Where the value of n depends on indS.

Thus it remains to consider the essential isometries that are not essentially nor-
mal.

Theorem 4.2. If S is essentially subnormal, then the following are equivalent:
(a) S is an essential isometry that is not essentially normal;
(b) S is unitarily equivalent to a compact perturbation of the unilateral shift

of infinite multiplicity.

Proof. It suffices to show (a) implies (b). By Proposition 4.1 σle(S) ⊆ σn(π(S)) ⊆
∂D. Thus, S has closed range and a finite dimensional kernel. Hence, by compactly
perturbing S we may assume that S is one–to–one. Since S is an essential isometry,
S∗S = I + K where I is the identity and K is compact. Thus, also |S| = I + K
for some new compact operator K. By, the polar decomposition of S, S = W |S| =
W (I + K) = W + C where W is a partial isometry and C is compact. Since S
is one–to–one, so is |S| and W . In particular, W is an isometry. Consider the
Wold decomposition of W . Say, W ∼= U (n) ⊕ V where U is a unilateral shift (of
multiplicity one) and V is a unitary. Notice that n = ∞ since S is not essentially
normal. Since U⊕V is a compact perturbation of U , we have that W ∼= U (∞)⊕V ∼=
U (∞) ⊕U ⊕ V ∼=(modB0) U

(∞) ⊕U ∼= U (∞). Thus, W is a compact perturbation of
U∞.

If S is a subnormal operator, then let svsmS denote the scalar-valued spectral
measure of the minimal normal extension of S. If 0 /∈ σap(S) and M∈ LatS, then
the index of M is defined to be −ind(S|M).

Corollary 4.3. If S is a pure subnormal operator such that σe(S) = ∂D and M∈
LatS has infinite index, then S|M is unitarily equivalent modulo the compacts to
the unilateral shift of inifinite multiplicity.

Proof. It follows from Theorem 3.4(a) that S is essentially normal. Hence, by
Proposition 4.1(d) we see that S|M is an essential isometry. So, Theorem 4.2
applies.

Corollary 4.4. Let S be a pure subnormal operator with σe(S) = ∂D and svsmS
carried by D. If M∈ LatS has infinite index and T = S|M, then [T*,T] is diago-
nalizable with non-zero eigenvalues having finite multiplicity. Further, σe([T ∗, T ]) =
{0, 1}.

Proof. By Corollary 4.3, T is a compact perturbation of U (∞). Thus, [T ∗, T ] is a
compact perturbation of an infinite rank projection. Hence, σe([T ∗, T ]) = {0, 1}.
Since the svsm[T ∗, T ] is purely atomic, [T ∗, T ] is diagonalizable. Furthermore,
since svsmS is carried by D, S strictly decreases the norm of each vector. Thus, 1
is not an eigenvalue of [T ∗, T ]. So, every non-zero eigenvalue of [T ∗, T ] has finite
multiplicity, since it does not belong to σe([T ∗, T ]).
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Example 4.5. If B is the Bergman shift, M ∈ LatB has infinite index and S =
B|M, then S is an irreducible subnormal operator that is unitarily equivalent modulo
the compacts to the unilateral shift of infinite multiplicity.

Thus it follows that [S∗, S] is diagonalizable with eigenvalues of finite multiplicity.
Furthermore, the eigenvalues cluster only at zero and one.

The previous example answers a question in Conway and Putnam [9] where an
irreducible subnormal operator is constructed that is similar to a compact pertur-
bation of the unilateral shift of infinite multiplicity. They ask whether “similar”
can be replaced by “unitary equivalence”. The work of Apostol, Bercovici, Foias
and Pearcy [2] implies that if S is a pure subnormal operator with σe(S) = ∂D and
svsmS carried by D, then S has invariant subspaces with infinite index. Also, see
Hedenmalm, Richter and Seip [12] for a construction of such invariant subspaces in
the Bergman space.

Example 4.5 shows that one may compactly perturb the unilateral shift of infinite
multiplicity and obtain an irreducible subnormal operator. Can this be done with
the inflation of other operators?

Question 4.6. Is there an irreducible subnormal operator unitarily equivalent mod
the compacts to the Bergman shift of infinite multiplicity?

The following simple proposition shows that the unilateral shift of infinite mul-
tiplicity and the Bergman shift of infinite multiplicity are not equivalent mod the
compacts.

Proposition 4.7. If S and T are operators such that B0 ⊆ C∗(S) and T is irre-
ducible, then the following are equivalent:

(a) S ∼= T ;
(b) S(∞) ∼= T (∞);
(c) S(∞) ∼= T (∞) (mod B0).

Proof. It suffices to show that (c) implies (a). If S(∞) ∼= T (∞) (mod B0), then
C∗(S) ≈ C∗(π(S(∞))) ≈ C∗(π(T (∞))) ≈ C∗(T ). Where C∗(a) ≈ C∗(b) means
that the map a 7→ b extends to a *-isomorphism. Thus, C∗(S) ≈ C∗(T ). Let φ
denote this *-isomorphism. Since φ|B0 is an irreducible representation of B0 it has
the form of conjugation by a unitary U (see [10], p.38). Thus, conjugation by U
and φ are two *-representations of C∗(S) that agree on B0. Since B0 ⊆ C∗(S)
is a non-degenerate ideal, φ and conjugation by U must agree on C∗(S). Hence
S ∼= T .

If S and T are essentially normal, then B–D–F Theory (see [5] or [10]) implies
that S and T are unitarily equivalent modulo the compacts if and only if σe(S) =
σe(T ) and ind(S − λ) = ind(T − λ). Notice, that the condition on the essential
spectra is equivalent to requiring that C∗(π(S)) is *-isomorphic to C∗(π(T )) under
a map sending π(S) 7→ π(T ). Thus the following is a natural question.

Question 4.8. If S and T are essentially subnormal operators and the map sending
π(S) 7→ π(T ) extends to a *-isomorphism of C∗(π(S)) onto C∗(π(T )) and S and T
have the same index function, then are they unitarily equivalent mod the compacts?

The following is also a natural question.

Question 4.9. Can one characterize the essentially subnormal operators that are
compact perturbations of subnormal operators? In particular, are they those opera-
tors with non-positive index function ?
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Observe that both questions have positive answers for essential isometries. This
follows from Theorem 4.2.

5. Similarity Invariants

It was shown in Radjavi and Rosenthal [13] (also see Conway [7], p.82) that if
a subnormal operator is quasisimilar to a normal operator, then it is also normal.
We shall use this result to show that within the class of essentially subnormal
operators, essential normality is a similiarity invariant. That is, the compactness
of the self-commutator is preserved under similarity.

Theorem 5.1. Let S and T be essentially subnormal operators. If S is similar to
T, then S is essentially normal if and only if T is essentially normal.

Proof. Suppose T is essentially normal and that S and T both act on the same
space H. Let X ∈ B(H) be an invertible operator such that X−1SX = T . Consider
π(S), π(T ) and π(X) in B/B0. Let φ be a faithful representation on a separable
Hilbert space of C∗(π(S), π(T ), π(X)).

Now, set S1 = φ(π(S)), N = φ(π(T )) and Y = φ(π(X)). We now have that
S1 is subnormal, N is normal and Y is invertible. Furthermore, we also have that
Y −1S1Y = N . Thus, S1 is a subnormal operator similar to the normal operator
N . Hence, S1 is also normal (see [13] or Conway [7], p. 82). So S is essentially
normal.

One may also extend Theorem 5.1 to essentially hyponormal operators, with a
similar proof. This uses a result of Stampfli and Wadha [14] implying that if a
hyponormal operator is similar to a normal operator, then it is also normal.

In view of the results for subnormal and hyponormal operators, the following
question is natural.

Question 5.2. If S and T are quasisimilar essentially subnormal operators and S
is essentially normal, then must T also be essentially normal?
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