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The Berger-Shaw Theorem for
Cyclic Subnormal Operators

Nathan S. Feldman

Abstract. This work gives a sharp form of the Berger-Shaw
Theorem for cyclic subnormal operators. That is, if S is a
cyclic subnormal operator, then S has trace class self-
commutator and the trace equals (1/π)Area[σ(S)−σe(S)]. It
also characterizes those functions f such that f(S) has trace
class self-commutator and computes the trace as the Dirichlet
integral of f̂ on the set of analytic bounded point evaluations
for S. The technique used also gives some partial results for
rationally cyclic subnormal operators.

Introduction. For an operator T the self-commutator of T is [T ∗,T ] =
T ∗T −TT ∗. The Berger-Shaw Theorem (see [4], p. 152) implies that every
rationally cyclic hyponormal operator T has trace class self-commutator and
tr[T ∗,T ] ≤ (1/π)Area[σ(T )]. This work considers the case of a pure cyclic sub-
normal operator S and gives another proof that S has trace class self-commutator
and computes the trace as tr[S∗,S] = (1/π)Area[σ(S)−σe(S)]. It follows that
the principal function for a cyclic subnormal operator vanishes a.e. on the essen-
tial spectrum. We also characterize the operators in the commutant of S that
have trace class self-commutator. The main tools used are Thomson’s Theorem
on the existence of bounded point evaluations for cyclic subnormal operators and
the Intertwining Lemma of Berger and Shaw allowing one to compare the trace
of the self-commutators of two hyponormal operators.

If µ is a positive compactly supported regular Borel measure in C, then let
P 2(µ) denote the closure of the (analytic) polynomials in L2(µ). If Sµ = Mz

on P 2(µ), then Sµ is a cyclic subnormal operator. Furthermore, every cyclic
subnormal operator can be represented in this form for some measure µ (see [4],
p. 52). If f ∈ P 2(µ)∩L∞(µ), then f(Sµ) denotes the multiplication operator on
P 2(µ) with symbol f .

For a given measure µ let G = abpe(µ) be the set of analytic bounded point
evaluations for P 2(µ). If Sµ is pure, then G = σ(Sµ)−σe(Sµ). For each λ in
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G, the reproducing kernel for the point λ is a function kλ in P 2(µ) such that
p(λ) = 〈p,kλ〉 for every polynomial p. Also for f in P 2(µ), let f̂(λ) = 〈f,kλ〉 be
the analytic extension of f to G.

We shall use Thomson’s Theorem, see [4] or [12], on the plentiful supply
of analytic bounded point evaluations to prove that f(Sµ) has trace class self-
commutator if and only if f̂ is in the Dirichlet space on G, that is

∫
G
|f̂ ′|2 dA <∞.

Furthermore, we shall show that

tr[f(Sµ)∗,f(Sµ)] =
1
π

∫
G

|f̂ ′|2 dA

For various Hilbert spaces H of analytic functions on a bounded region G
it has been shown that for f ∈ H∞(G) the operator Tf , of multiplication by f

on H, satisfies tr[T ∗f ,Tf ] = (1/π)
∫

G
|f ′|2 dA. For example this holds if H is a

weighted Bergman space on G. For the unweighted Bergman space this is due
to Berger and Shaw; see [2] for the weighted case. Recently, Aleman [1] has
shown the above equality to be true when H is the Hardy space of an arbitrary
bounded region.

1. Cyclic subnormal operators. We now state and prove the main
theorem.

Main Theorem. If Sµ = Mz on P 2(µ) is a pure cyclic subnormal operator,
G = abpe(µ) and f ∈ P 2(µ)∩L∞(µ), then [f(Sµ)∗,f(Sµ)] is trace class if and
only if f̂ is in the Dirichlet space on G. In that case,

tr[f(Sµ)∗,f(Sµ)] =
1
π

∫
G

|f̂ ′|2 dA.

We shall state the Intertwining Lemma for completeness. See [3], p. 73, for
a nice proof.

Intertwining Lemma. Let S and T be hyponormal operators on H and
K respectively. If there exists a one-to-one Hilbert-Schmidt operator W : H → K
with dense range satisfying WS = TW , then tr[T ∗,T ] ≤ tr[S∗,S].

In what follows, H∞(G) is the algebra of bounded analytic functions on
the region G and H2(G) is the Hardy space. Also, let SG = Mz on H2(G) and
f(SG) = Mf on H2(G).

Lemma 1.1. If G is a bounded simply connected region and f ∈ H∞(G),
then the multiplication operator f(SG) has trace class self-commutator if and only
if f is in the Dirichlet space on G. Also, tr[f(SG)∗,f(SG)] = (1/π)

∫
G
|f ′|2 dA.
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Proof. If G = D, then this is an easy computation involving the Fourier
coefficients of f . In general, let ϕ : D → G be a Riemann map. If f ∈
H∞(G), then the operator f(SG) is unitarily equivalent to (f ◦ϕ)(SD), thus
with a simple change of variables we see that the general case can be reduced
to the unit disk, D.

Let G be any bounded region in C. We say that a Hilbert space H is a
Hilbert space of analytic functions on G if H is a vector subspace of Hol(G), the
Frechet space of Holomorphic functions on G, such that the inclusion of H into
Hol(G) is continuous. The following Lemma shall be proved after the Theorem.

Lemma 1.2. If G is any bounded region, then there exists a sequence of
regions {Gn} such that for each n, Gn is bounded by an analytic Jordan curve,
clGn ⊆ Gn+1 ⊆ G,

⋃∞
n=1 Gn is dense in G and Area(Gn)→ Area(G) as n→∞.

Theorem 1.3. If H is any Hilbert space of analytic functions on a bounded
region G that contains the polynomials and f ∈ H∞(G) is such that multiplica-
tion by f , Mf , on H is a hyponormal operator, then

tr[M∗f ,Mf ] ≥ 1
π

∫
G

|f ′|2 dA.

Proof. Let {Gn} be as in Lemma 1.2. For a fixed n, define Wn : H →
H2(Gn) as the restriction operator, since Gn is compactly contained in G, this
is a well-defined bounded linear operator. Clearly, W is one-to-one, and since H
contians the polynomials and ∂Gn is a Jordan curve, Wn has dense range. Clearly
Wn intertwines S = (Mf ,H) and T = (Mf ,H2(Gn)) and both are hyponormal
operators. We now show that Wn is Hilbert-Schmidt.

So, let {fk} be any orthonormal basis forH. Also, let Kz be the reproducing
kernels in H for z ∈ G and fix an integer n. Observe that

Kz =
∞∑

k=1

〈Kz,fk〉fk =
∞∑

k=1

fk(z)fk,

so

‖Kz‖2µ =
∞∑

k=1

|fk(z)|2

.
Thus we have

∞∑
k=1

‖Wnfk‖2H2(Gn) =
∞∑

k=1

∫
∂Gn

|fk(z)|2dωn =
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=
∫

∂Gn

∞∑
k=1

|fk(z)|2dωn

=
∫

∂Gn

‖Kz‖2Hdωn <∞ .

The last integral is finite because the reproducing kernels {Kz : z ∈ clGn}
form a bounded set inH. Thus Wn is Hilbert-Schmidt. The Intertwining Lemma
now applies to give that tr[S∗,S] ≥ tr[T ∗,T ]. But since Gn is
simply connected, Lemma 1.1 implies that tr[T ∗,T ] = (1/π)

∫
Gn
|f ′|2 dA. Thus,

tr[S∗,S] ≥ (1/π)
∫

Gn
|f ′|2 dA for all n. Now, since Area(Gn)→ Area(G), letting

n→∞ the monotone convergence theorem gives the desired conclusion.

Proof of Lemma 1.2. If G is a bounded region, let τ : D → G be a
universal covering map. A fundamental region for τ is a region F in D so
that τ(clF ∩D) = G and τ is one-to-one on F . Let F be a ”Dirichlet region”
for τ , that is a particular type of fundamental region that is an intersection
of hyperbolic half-planes in D, see [7], p. 52. Since the region F is simply
connected, in fact hyperbolically convex, and τ is one-to-one on F , it follows
that τ(F ) is a simply connected region contained in G. Also, τ(F ) is dense
in G, since τ maps clF ∩D onto G. Furthermore, since ∂F is contained in a
countable number of hyperbolic geodesics, ∂F has area zero. Now, as analytic
functions map sets of area zero onto sets of area zero, it follows that τ(∂F ) has
area zero. Since G− τ(F ) ⊆ τ(∂F ), and this latter set has area zero, it follows
that Area(G) = Area(τ(F )). Now, let ϕ : D → τ(F ) be a Riemann map. If
Gn = ϕ({z ∈ D : |z| < 1− (1/n)}), then Gn has the required properties.

Notice that if G is a simply connected region then Lemma 1.2 follows im-
mediately from the Riemann mapping theorem.

Corollary 1.4. If Sµ is a pure cyclic subnormal operator, abpe(µ) = D

and f ∈ P 2(µ)∩L∞(µ), then tr[f(Sµ)∗,f(Sµ)] ≥ (1/π)
∫
D
|f̂ ′|2 dA, where f̂ is

the analytic extension of f to D.

Proof. Thomson’s Theorem allows us to use the natural map ˆ : P 2(µ) →
Hol(D) to identify P 2(µ) with a space of analytic functions on D. Also, if
f ∈ P 2(µ)∩L∞(µ), then f(Sµ) is a subnormal operator. Hence Theorem
1.3 applies.

Lemma 1.5. If Sµ is a pure cyclic subnormal operator, abpe(µ) = D and
f is analytic on a neighborhood of the closed unit disk, clD, then

tr[f(Sµ)∗,f(Sµ)] ≤ 1
π

∫
D

|f ′|2 dA.
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Proof. Suppose f is analytic on {z : |z| < r} for some r > 1. Let G =
{z : |z| < r0} for some 1 < r0 < r. So, f ∈ H∞(G). Now, let S = Mf on
H2(G) and set T = f(Sµ). Also, define W : H2(G) → P 2(µ) by Wh = h|clD.
Clearly, WS = TW and W is one-to-one with dense range. Also, an argument as
in Theorem 1.3 shows that W is Hilbert-Schmidt. So, the Intertwining Lemma
gives us that tr[T ∗,T ] ≤ tr[S∗,S] = (1/π)

∫
G
|f ′|2 dA. The last equality holds by

Lemma 1. Now, letting r0 decrease to 1, gives the result.

Proof of the Main Theorem.
≫ Special Case: abpe(µ) = D.

In this case, let f ∈ P 2(µ)∩L∞(µ). By Corollary 1.4, it suffices to show that
tr[f(Sµ)∗,f(Sµ)] ≤ (1/π)

∫
D
|f̂ ′|2 dA. So, suppose that (1/π)

∫
D
|f̂ ′|2 dA < ∞,

then f̂ ∈ D1, the Dirichlet space on D. Define fj(z) = f̂(rjz) for some sequence
{rj} increasing to 1. It is easy to check that fj converges to f̂ in the Dirichlet
norm, thus

1
π

∫
D

|f ′j |2 dA→ 1
π

∫
D

|f̂ ′|2 dA.

Now, as each fj is analytic on a neighborhood of clD, Corollary 1.4 and Lemma
1.5 give that tr[fj(Sµ)∗,fj(Sµ)] = (1/π)

∫
D
|f ′j |2 dA. Since fj(Sµ) is subnormal

it follows that [fj(Sµ)∗,fj(Sµ)] is positive, hence its trace equals its trace norm.
Thus the sequence {[fj(Sµ)∗,fj(Sµ)] : n ≥ 1} is norm bounded in the space
of trace class operators, B1. Since B1 is the dual of the separable space of
compact operators B0, there is a weak* convergent subsequence. Let’s assume
that [fj(Sµ)∗,fj(Sµ)] → A weak* in B1, that is if K is any compact operator,
then tr(K[fj(Sµ)∗,fj(Sµ)]) → tr(KA). Now, by choosing K to be the rank
one operator h⊗h for some h ∈ P 2(µ), one sees that since [fj(Sµ)∗,fj(Sµ)] is
positive for all n, A must be a positive operator in B1.

Claim 1. trA ≤ (1/π)
∫
D
|f̂ ′|2 dA.

Since A is a positive trace class operator, its trace equals its trace norm.
Thus since the norm is lower semi-continuous in the weak* topology, we have

trA = ‖A‖1 ≤ lim inf
j→∞

‖[fj(Sµ)∗,fj(Sµ)]‖1

= lim inf
j→∞

1
π

∫
D

|f ′j |2 dA =
1
π

∫
D

|f̂ |2 dA

Observe that the last limit exists because fj converges to f̂ in the Dirichlet
norm.

Claim 2. A = [f(Sµ)∗,f(Sµ)].
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If h ∈ P 2(µ), then by considering rank one operators, we have
〈[fj(Sµ)∗,fj(Sµ)]h,h〉 → 〈Ah,h〉. Also, as fj converges pointwise boundedly
to f , we get that fjh→ fh in L2(µ) norm and f̄jh→ f̄h in L2(µ) norm. Hence
if P is the projection of L2(µ) onto P 2(µ), then

〈[fj(Sµ)∗,fj(Sµ)]h,h〉 = ‖fj(Sµ)h‖2−‖fj(Sµ)∗h‖2 = ‖fjh‖2−‖P (f̄jh)‖2

→ ‖fh‖2−‖P (f̄h)‖2 = 〈[f(Sµ)∗,f(Sµ)]h,h〉

Hence we have that for each h ∈ P 2(µ),〈Ah,h〉 = 〈[f(Sµ)∗,f(Sµ)]h,h〉. As
both operators are self-adjoint, they must be equal.

Thus, since [f(Sµ)∗,f(Sµ)] = A, [f(Sµ)∗,f(Sµ)] is trace class, and
tr[f(Sµ)∗,f(Sµ)] = trA ≤ (1/π)

∫
D
|f̂ ′|2 dA. Combining this with Corollary 1.4,

gives tr[f(Sµ)∗,f(Sµ)] = (1/π)
∫
D
|f̂ ′|2 dA.

≫ General Case: Sµ is pure and G = abpe(µ).

It follows from Thomson’s Theorem that each component of G corresponds
to an irreducible summand of Sµ, hence Sµ is a direct sum of irreducible cyclic
operators and the self-commutator is therefore also a direct sum of self-commuta-
tors. Thus it suffices to consider the case where Sµ is irreducible. In particular
G is connected.

If τ is a Riemann map of D onto G, then there is a measure ν on clD such
that Sν is pure, abpe(ν) = D, µ = ν ◦ τ−1 and Sµ is unitarily equivalent to τ(Sν)
(this strongly uses Thomson’s Theorem, see [9]). Further, the unitary is given
by composition with τ .

If f ∈ P 2(µ)∩L∞(µ), then g = f ◦ τ ∈ P 2(ν)∩L∞(ν) and so it follows that
f(Sµ) ∼= g(Sν). Thus, tr[f(Sµ)∗,f(Sµ)] = tr[g(Sν)∗,g(Sν)] = (1/π)

∫
D
|ĝ′|2 dA.

Now, as ĝ = f̂ ◦ τ , a simple change of variables gives that this last integral equals
(1/π)

∫
G
|f̂ ′|2 dA. So the proof of the Theorem is complete.

If S is any pure cyclic subnormal operator, represented as Mz on P 2(µ),
then σ(S)−σe(S) is exactly the set of analytic bounded point evaluations for
P 2(µ).

Corollary 1.6. If S is any cyclic subnormal operator, then S has trace
class self-commutator and tr [S∗,S] = (1/π)Area[σ(S)−σe(S)].

If T is any pure hyponormal operator with trace class self-commutator, then
the principal function for T , gT , is a non-negative function defined on σ(T ) such
that gT (λ) = −ind(T −λ) for all λ /∈ σe(T ) and tr[T ∗,T ] = (1/π)

∫
σ(T )

gT dA

(see[3] or [8]).
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Corollary 1.7. If S is a pure cyclic subnormal operator, then the principal
function for S vanishes a.e. on σe(S).

Proof. If gS is the principal function for S and G = σ(S)−σe(S), then we
have

1
π

Area(G) = tr[S∗,S] =
1
π

∫
σ(S)

gs dA =
1
π

∫
G

1dA +
1
π

∫
σe(S)

gS dA

where we have used that gs(λ) = −ind(S−λ) = 1 on G. Thus, since gS is
non-negative, we see that gS = 0 a.e. on σe(S).

2. Examples. The following examples show that it is necessary to leave
out the essential spectrum in computing the trace of [S∗µ,Sµ] and that one does
not always have equality in the Berger-Shaw Theorem.

Example 2.1. It’s known that there exist Jordan curves with positive area
(see [10] or [11]). If G is the simply connected region bounded by such a curve,
then there exists a measure µ on G, so that Sµ is an irreducible subnormal
operator and abpe(µ) = G (see [4], p. 405). Hence σe(Sµ) = ∂G has positive
area.

Lemma 2.2. If B is any disk and K ⊆ B is a nowhere dense compact set,
then there exists a sequence {∆k} of open disks contained in B−K such that
∆n and ∆k have disjoint closures if n 6= k, the radii of the disks is summable
and the disks cluster precisely on K.

By this last statement we mean that if {zk} is any sequence with zk ∈ ∆k,
then the limit points of the sequence {zk} is equal to K.

Proof. Since K is nowhere dense, B−K is dense in B. Now, choose a
sequence {an} of points B−K that clusters precisely on K. One may do this
as follows, for each integer n, cover K with a finite number of open disks with
radius 1/n. Since B−K is dense in B, one may choose one point in each of
these disks. In this way the constructed sequence clusters precisely on K. So
for each n,an ∈ B−K is isolated from the other points of this sequence, hence
we may choose a disk ∆n ⊆ B−K centered at an so that the disks {∆n} have
disjoint closures. If we now shrink the disks as necessary to guarantee that their
radii are summable, then they will still have disjoint closures. Also, since the
radii tend to zero, the disks will cluster at precisely the same points as the
sequence {an}.

We now use Lemma 2.2 to give two examples. The first example illustrates
that even for pure cyclic subnormal operators the essential spectrum can be a
very thick subset of the spectrum. In particular it shows how far the inequality
in the Berger-Shaw Theorem can be from an equality.

Example 2.3. If ε > 0, then there exists a pure cyclic subnormal operator
Sµ such that tr[S∗µ,Sµ] < ε and yet (1/π)Area[σ(Sµ)] ≥ 1− ε.
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Proof. Let 0 < ε < (1/2). Choose a compact nowhere dense set K ⊆ D,
such that (1/π)Area(D−K) < ε. Now, let ∆n be the disks guaranteed by
Lemma 2.2. Since the disks cluster exactly on the set K, we have cl(

⋃∞
n=1 ∆n) =

K ∪ (
⋃∞

n=1 cl∆n). Also since the sum of the radii of ∆n is finite, if we let µ be arc
length measure on

⋃∞
n=1 ∂∆n, then Sµ is pure. Clearly, σ(Sµ) = K ∪ (

⋃∞
n=1 cl∆n)

and G = abpe(µ) =
⋃∞

n=1 ∆n. Thus, (1/π)Area[σ(Sµ)] ≥ (1/π)Area(K) ≥ 1− ε

and tr[S∗µ,Sµ] = (1/π)Area(G) < ε.

The next example shows that even if the essential spectrum of S is small and
the index function of S is integrable, S need not have trace class self-commutator.
First a simple Lemma is needed.

Lemma 2.4. Suppose {Kn : n ∈ Z+ ∪{∞}} is a sequence of disjoint com-
pact sets such that the sets {Kn : n ≥ 1} cluster only on K∞. If R(Kn) = C(Kn)
for n ∈ Z+ ∪{∞} and K = cl(

⋃∞
n=1 Kn), then R(K) = C(K).

Proof. If µ is a measure on K and µ⊥R(K), then since each Kn, n <
∞, is isolated from the others including K∞, Runge’s Theorem gives that the
characteristic function of Kn belongs to R(K). Thus, if f ∈ R(Kn) and f is
defined to be zero off Kn, then f ∈ R(K). So, µ|Kn⊥R(Kn), thus µ|Kn = 0 for
all n <∞. Hence µ is supported on K∞. Now, if U is any bounded component
of C−K∞, then U −K 6= Ø, else U ⊆

⋃∞
n=1 Kn and this contradicts the Baire

Category Theorem. Hence Runge’s Theorem says that R(K)|K∞ = R(K∞).
Thus since µ is supported on K∞ and R(K∞) = C(K∞) we see that µ = 0.
Thus R(K) = C(K).

It was shown by Hadwin and Nordgren, see [6], that a hyponormal operator
T whose essential spectrum has area zero, has trace class self-commutator if and
only if its index function, ind(T −λ) is (area) integrable off σe(T ). We now show
that a natural analog of this for subnormal operators is not true.

Example 2.5. There exists a pure subnormal operator S with compact self-
commutator such that R(σe(S)) = C(σe(S)), the index function, ind(S−λ), is
integrable on σ(S)−σe(S) and yet [S∗,S] is not trace class.

Proof. To start, let B0 = D the unit disk and choose a totally disconnected
compact set K0 in B0 with (1/π)Area(B0−K0) < (1/2). Now, let Bn, n ≥ 1, be
the open disks guaranteed by Lemma 2.2. Also, let rn, be the radius of Bn. Next
choose positive integers mn such that

∑∞
n=0 mnr2

n =∞. For each n ≥ 1, choose a
totally disconnected compact set Kn ⊆ Bn such that (mn + 2)Area(Bn−Kn) ≤
(1/n2). Next for each n ≥ 1, apply Lemma 2.2 to get a sequence {∆nk : k ≥ 1}
of open disks in Bn−Kn clustering exactly on Kn. Define for n ≥ 0, Sn =
Mz on H2(Bn) and for n, k ≥ 1 define Snk = Mz on H2(∆nk). Let S =⊕∞

n=o S
(mn)
n ⊕

⊕∞
n,k=1 Snk. We claim that S is the desired operator. Clearly S
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is a pure subnormal operator. Also, if K is compact and totally disconnected
then R(K) = C(K), hence Lemma 2.4 implies that R(σe(S)) = C(σe(S)). Now,
this last property guarantees that S has compact self-commutator (see [1] or
[5]). Also, if we set T =

⊕∞
n=0 S

(mn)
n , then tr[T ∗,T ] =

∑∞
n=0 mnr2

n = ∞. It
follows that T does not have trace class-self-commutator, hence S cannot either.
Finally, to show that the index function is integrable on G = σ(S)−σe(S), it
suffices to check this on the union U of the disks Bn, because |ind(S−λ)| ≤ 1 for
λ not in U . Since |ind(S−λ)| ≤ (mn + 2) for λ ∈ Bn and G∩Bn ⊆ Bn−Kn,
we have ∫

G∩U

|ind(S−λ)|dA =
∞∑

n=1

∫
G∩Bn

|ind(S−λ)|dA

≤
∞∑

n=1

(mn + 2)Area(Bn−Kn) <∞ ,

where the last sum is finite because (mn + 2)Area(Bn−Kn) ≤ (1/n2).

In spite of the example above, there are other ways of measuring the “small-
ness” of a compact set. The following definition has proven useful in other set-
tings. If S is a subnormal operator and K is a compact set in σ(S), we say
that K is negligible (for the operator S) if the Toeplitz operator Sf commutes
with S modulo the trace class operators, where f is the Cauchy transform of the
characteristic function of K.

Question. If S is a pure subnormal operator such that σe(S) is negligible
and the index function of S is integrable off σe(S), then must [S∗,S] be trace
class?

3. Some generalizations. Theorem 1.3 applies to some rationally cyclic
subnormal operators. Notice though that the region G in Theorem 1.3 needs
to be connected or have at most a finite number of components. Let R2(K,µ)
denote the L2(µ) closure of the rational functions with poles off K.

Theorem 3.1. If S = Mz on R2(K,µ) is pure, G = abpe(R2(K,µ)) is
connected and the reproducing kernels are dense in R2(K,µ), then for f ∈
R2(K,µ)∩L∞(µ) we have tr[f(S)∗,f(S)] ≥ (1/π)

∫
G
|f̂ ′|2 dA.

Proof. Since the reproducing kernels are dense, the natural map R2(K,µ)
→ Hol(G) allows us to identify R2(K,µ) with a Hilbert space of analytic func-
tions on G. Also, since G is connected and f(S) is a subnormal operator, so
Theorem 1.3 applies.

Corollary 3.2. If S = Mz on R2(K,µ) is pure, G = abpe(R2(K,µ)) is con-
nected and clG = σ(S), then for f ∈ R2(K,µ)∩L∞(µ) we have tr[f(S)∗,f(S)] ≥
(1/π)

∫
G
|f̂ ′|2 dA.
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Proof. Since G is connected and clG = σ(S), we have σe(S) = ∂G and thus
R(σe(S)) = C(σe(S)). Now, if M is the collection of all functions in R2(K,µ)
that are orthogonal to the reproducing kernels, then M is a closed invariant
subspace for S and σ(S|M) ⊆ σe(S). Thus, since R(σe(S)) = C(σe(S)), this
implies that S|M is normal. Since S is pure, M = (0) and the reproducing
kernels are dense. Hence Theorem 3.1 applies.

The Berger-Shaw Theorem together with Corollary 3.2 gives the following
result.

Corollary 3.3. If S = Mz on R2(K,µ) is pure, G = abpe(R2(K,µ)) is
connected clG = σ(S) then (1/π)Area(G) ≤ tr[S∗,S] ≤ (1/π)Area[σ(S)].

Corollary 3.4. If S = Mz on R2(K,µ) is pure, G = abpe(R2(K,µ)) is
connected, clG = σ(S) and Area[∂G] = 0, then tr[S∗,S] = (1/π)Area(G).

If S = Mz on R2(K,µ), then it is known that abpe(R2(K,µ)) = σ(S)−
σe(S). Exactly when σe(S) contributes to the trace of [S∗,S] is unknown. For
cyclic subnormal operators we have shown above that it does not. We now
construct a pure rationally cyclic subnormal operator with G = abpe(R2(K,µ))
dense in σ(S), yet σe(S) has positive area and is part of the trace of [S∗,S].
That is, the principal function gs for S, is not zero a.e. on σe(S).

Example 3.5. There exists a pure rationally cyclic subnormal operator S

with G = abpe(R2(K,µ)) dense in σ(S), and yet (1/π)Area[G] < tr [S∗,S] <

(1/π)Area[σ(S)].

Proof. Suppose L is a swiss cheese; that is, there are open disks ∆n inside
the unit disk D whose union is dense in D and with summable radii such that
L = clD−

⋃∞
n=1 ∆n. Let ν1 be arc length measure on

⋃∞
n=1 ∂∆n. Now, let Bn be

an open disk with the same center as ∆n but with half the radius. Also, let ν2 be
arc length measure on

⋃∞
n=1 ∂Bn. If we set K = L∪

⋃∞
n=1 clBn and µ = ν1 + ν2,

then S = Mz on R2(K,µ) is a pure rationally cyclic subnormal operator. Further,
σ(S) = K,σe(S) = L∪

⋃∞
n=1 ∂Bn and G = abpe(R2(K,µ)) =

⋃∞
n=1 Bn. Now, if

Si = Mz on R2(K,νi), then S = S1⊕S2. Since S2 is a direct sum of functions of
the unilateral shift, Lemma 1.1 applies to give that tr[S∗2 ,S2] = (1/π)Area(G).
Also since S1 is pure, tr[S∗1 ,S1] > 0. Thus tr[S∗,S] = tr[S∗1 ,S1] + tr[S∗2 ,S2] =
tr[S∗1 ,S1] + (1/π)Area(G) > (1/π)Area(G).

Now simply direct sum S with an operator T from Example 2.1 or 2.3
whose spectrum is disjoint from S. This direct sum is the required rationally
cyclic subnormal operator.

The previous example, is one of the standard examples of an R2(K,µ) space
where the reproducing kernels are not dense.

We shall closes with a natural question.
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Question. If S = Mz on R2(K,µ) is a pure rationally cyclic subnormal
operator, G = abpe(R2(K,µ)) and R(σe(S)) = C(σe(S)), then is tr[S∗,S] =
(1/π)Area(G)?

Notice that this hypothesis R(σe(S)) = C(σe(S)) is satisfied by every ir-
reducible cyclic subnormal operator, so this is a natural generalization to the
rationally cyclic case. Also this hypothesis guarantees that the reproducing
kernels are dense in R2(K,µ). Further, the example mentioned above with
tr[S∗,S] > (1/π)Area(G) does not satisfy R(σe(S)) = C(σe(S)).
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